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Brownian dipole rotator in alternating electric field
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The study addresses the azimuthal jumping motion of an adsorbed polar molecule in a periodic n-well
potential under the action of an external alternating electric field. Starting from the perturbation theory of the
Pauli equation with respect to the weak field intensity, explicit analytical expressions have been derived for the
time dependence of the average dipole moment as well as the frequency dependences of polarizability and the
average angular velocity, the three quantities exhibiting conspicuous stochastic resonance. As shown, unidi-
rectional rotation can arise only provided simultaneous modulation of the minima and maxima of the potential
by an external alternating field. For a symmetric potential of hindered rotation, the average angular velocity, if
calculated by the second-order perturbation theory with respect to the field intensity, has a nonzero value only
at n=2, i.e., when two azimuthal wells specity a selected axis in the system. Particular consideration is given
to the effect caused by the asymmetry of the two-well potential on the dielectric loss spectrum and other
Brownian motion parameters. When the asymmetric potential in a system of dipole rotators arises from the
average local fields induced by an orientational phase transition, the characteristics concerned show certain

peculiarities which enable detection of the phase transition and determination of its parameters.

DOLI: 10.1103/PhysRevE.77.061111

I. INTRODUCTION

Being relatively loosely bound to the surface, physisorbed
molecules are rather motile and exhibit, in particular, high
rotational mobility. Hindered rotational movement is also
typical of chemisorbed polyatomic molecules or polyatomic
groups tightly bound to a surface through one atom, whereas
other atoms can have several equilibrium positions in the
potential induced by the nearest substrate atoms [1,2]. Much
recent interest has been attracted by so-called molecular ro-
tors artificially formed on surfaces [3,4]. These molecular
engines provide an insight into the physical principles of
controlled mechanical movement and friction on the nano-
scale as well as the effects of random thermal movement
which are inherent in nanodevices as opposed to conven-
tional macromachinery.

Rotational movement of molecules and atomic groups on
a solid surface manifests itself in a variety of experiments.
Vibrational spectroscopy detects characteristic absorption in
the frequency regions of both stretching and deformation
(angular) vibrations, the former also giving rise to the spec-
tral lines at combined frequencies, i.e., at sums and differ-
ences of the frequencies of original lines. In addition, rota-
tional movement causes specific broadening of spectral lines,
with its temperature dependence governed by the rotational
reorientation frequencies. For instance, rotations of hydroxyl
groups on oxide surfaces become possible due to relatively
small reorientation barriers (AU,=~55 meV), which are
comparable to the characteristic thermal energy (kgT
~26 meV at T=300 K). As a result, characteristic IR ab-
sorption arises in the frequency region 100—200 cm™' and a
typical temperature dependence (of the Arrhenius type) is
observed for the spectral bands of the valent OH vibrations

[1].
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Dielectric measurements offer another promising method
to detect rotational movement of polar surface species. To
exemplify, the temperature dependence of the dielectric loss
tangent reflects the stochastic resonance [5] which arises
when the frequency of the applied electric field approaches
that of thermally activated molecular reorientations between
the equilibrium angular positions. Experiments of this kind
are very sensitive to the local environment of a surface center
thus being structurally informative. This motivates the devel-
opment of models which depict the frequency dependence of
polarizability for rotationally mobile polar surface centers.
The origin of unidirectional rotation in a linearly polarized
alternating electric field is also of great interest: it has much
in common with Brownian motors in which directed motion
arises from the ratchet effects governed by an asymmetric
fluctuating potential [6-9].

The present paper addresses the angular Brownian motion
of a particle in a periodic n-well potential under the action of
the external alternating electric field (Sec. II). Starting from
the perturbation theory of the Pauli equation with respect to
the weak field intensity, explicit analytical expressions have
been derived for the time dependence of the average dipole
moment and the frequency dependences of polarizability and
the average angular velocity of a dipole rotator. The general
prerequisites for the initiation of unidirectional rotation have
been analyzed (Sec. III). As found by the second-order per-
turbation theory with respect to the field intensity, unidirec-
tional rotation in a symmetric potential is only possible at
n=2, i.e., when two azimuthal wells specify a selected axis
in the system (Sec. IV). Therefore, the case of a two-well
potential is considered in detail and we also include the ef-
fect of asymmetry induced by local fields, which result both
from environmental inhomogeneities and from orientational
ordering in the low-temperature region (Sec. V). The results
obtained demonstrate that stochastic resonance clearly mani-
fests itself in temperature dependences of experimentally ob-
servable characteristics of dipole rotators; this phenomenon
gives valuable structural evidence about the local environ-
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FIG. 1. An azimuthal potential of hindered rotation with n wells
and n barriers labeled by the index j=0,1,...,n—1 (for definite-
ness, here n=3). The unit vectors e; refer to equilibrium rotator
orientations. The alternating electric field is oriented at the angle ¢

to the vector ey,

ment of rotating species and also depicts the features of their
orientational ordering (Sec. VI).

I1. BASIC EQUATIONS

Consider the azimuthal jumping motion of a Brownian
particle in a periodic n-well potential under the action of an
external alternating electric field (as shown in Fig. 1 for n
=3). The complete description should be based on the con-
tinuous process and the corresponding Fokker-Planck or
Smoluchowski equations. In some cases, when the particle
motion dynamics can be subdivided into a fast and a slow
component, the reduction of the continuous description to a
kinetic one is possible [10]. The azimuthal jumping motion
represents the slow component, whereas the time scale for
the intrawell motion is assumed to be much shorter, so that
quasiequilibrium in each well can be established during the
characteristic period of the external governing process. The
separation of the two time scales is possible, if the interwell
barrier heights AU, exceed the thermal energy of the moving
particle kzT (where kg is the Boltzmann constant and 7T'is the
absolute temperature) and the potential fluctuation frequen-
cies w are much less than the inverse time D/L? of the par-
ticle diffusion over distances of order L (where D is the
diffusion coefficient and L is the potential period) [11]. Then
the kinetic description in terms of the Pauli master equation
is quite adequate.

Let p;(1) specify a probability for a particle to be in the jth
well (j=0,1,...,n—1) at the instant 7, with the normaliza-
tion condition

n-1
2 pn=1. (1)
J=0

Then the particle flow through the barrier j is expressible in
terms of the probabilities p;(f) and the rate constants w;/(t)
referring to the transitions between the wells j and j’ closest
to the barrier as follows:

() =w; i (Dp;(t) =Wy [(6)pjai(2). ()

On the other hand, the balance equation which defines the
functions p;(r) is represented by the known Pauli equation
and can be written as
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(0=~ 1,0, )

Now consider the rate constants for the interwell transitions
in the potential

Un((P’t) = Un((P) - I“((P) : E(t) (4)

It is assumed that the angular contribution to the potential
energy of a polar molecule U,(¢) is represented by an n-well
hindered rotation potential and the time dependence arises
due to the interaction of the molecular dipole moment u(¢p)
with the external alternating electric field E(z). If the transi-
tion is treated as the surmounting of a barrier by a particle in
terms of the Arrhenius law, then the transition rate constant is
expressed as an inverse exponential function of the ratio of
the barrier energy to the thermal energy kzT; the preexpo-
nential factor has the meaning of the characteristic frequency
of the particle’s attacks on the potential barrier and is speci-
fied by the Kramers theory for different motion regimes [12].
Then the quantities w; () for alternating one-dimensional
wells and barriers assume the form

wj (1) =v;(Du;(t),  wi () =v(0)u, (7). (5)

Here the function v;(r) depends only on the position of the
Jjth barrier in the potential U,(¢,t), whereas u;(?) is specified
by the position of the jth well in the same potential and also
by other well parameters as, for instance, its curvature.

Taking into account relation (5), we rewrite the definition
of flux (2) to obtain

J{(1) =v, (&), (6)

with the function

&) = ui(0)pi1) = upy (1), (7)
which satisfies the evident condition

n—1

> & =0. (8)
j=0

Assuming a sufficiently small external electric field intensity
E(7), the n-well structure of the potential relief U,(¢) re-
mains unchanged. Moreover, the field can only cause the
time dependences of the functions v (#) and () but does not
lead to a notable spatial shift of the extrema of the potential
U,(¢). Thus, one can derive a number of important regulari-
ties concerning the effect of an external field on the proper-
ties of the system. If the field modifies only barrier positions,
i.e., only the function v,(r) is time dependent whereas the
well positions u;(t)=u; are unchanged, then the quantities
&,(t) reduce to zero in the established stationary regime
[when the system has already forgotten the initial distribution
p;(0)]. This corresponds to the thermodynamic equilibrium
state in which time-independent probabilities p; satisfy the
identity p;/pj,1=u;,1/u; and depend only on statistical
weights and the minimum values of the potential U,(¢). In
this case, all fluxes also vanish.

Another inference of significance follows from consider-
ation of periodic external fields and the fluxes averaged over
the field period 7 in the stationary regime,
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Since the stationary regime implies p;(t+17)=p,(t), averaging
of Eq. (3) in such a way suggests that average fluxes are
independent of the barrier number j ((/;(1)),=(J),). Substi-
tute formula (6) into Eq. (3) as follows:

(1) =0 (D611~ 0 (D). (10)

With relations (1) and (8), we express the functions &() in
terms of p;(t) and substitute the result into Eq. (6). Then we
obtain, at n=2,

_ Uo(t) d
o)== s o (1)
and at n>2,
1 d
Jot)=——5—| - Epo(f)

Un—l(t)g U;I(t)

n—-1 n-1
+v,0(0 2 (2 v;l(t)) i t)] (12)

J=2 k=)

With the condition that the external field makes only the well
functions u; (t) dependent on time and the barrier functions v;
remain tlme independent, fluxes (11) and (12) averaged over
the field period 7 vanish in the stationary regime. As a result,
unidirectional motion ({(J),# 0) is possible only provided
that both u,(r) and v,(t) depend on time. In the crudest ap-
proximation, the functions v;(¢) and u;(t) change linearly
with the field intensity. Hence, the response of the probabili-
ties pj(t), which is linear in the field, is determined solely by
the well functions u,() and proves sufficient to calculate the
average flux using Egs. (11) and (12). Thus, the expansion of
the average flux (J), in the field intensity starts with the
terms proportional to the product of the functions v;(¢) and
u;(t), and the flux (J), is thus quadratic in the field. A remark-
able feature of representations (11) and (12) is that they al-
low calculation of the quadratic flux using the first-order
perturbation theory for p;(¢) and the barrier factors v (z).

Let the term “Brownian particle” refer to a certain part of
a polyatomic polar molecule which reorients by jumpwise
rotation about a selected axis. If a dipole moment of such a
molecule is defined as ;= ue;, with u denoting the absolute
magnitude of the dipole moment and e; denoting the unit
orientation vector, then the average dipole moment takes the
following form:

n—1

(D)= u2 pilD)e;. (13)
j=0

For the average flux and dipole moment to be found, it is
necessary to know the functions p;(f), which are easily cal-
culable using a small parameter, the weak intensity of the
external electric field. A general perturbation theory with re-
spect to this small parameter is developed in the next section.
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III. PERTURBATION THEORY OF THE PAULI
EQUATION

We represent the Pauli equation for the probability of the
system p;(¢) to be in the state j at the instant ¢ so as to
conveniently transform it further [2,13].

d
~ i)+ 2 Wiy (0p;(0) =0, (14)
jV

= 6”/2 Wjj"(t) - WJ/J(I)

Here w;: (1) is a time- dependent rate constant for the transi-
tion from the state j' to the state j, which is expressible as a
sum of the stationary unperturbed part W,('?j)' and the time-
dependent addition W,/ (#). Likewise, the quantity W;(¢) can
be written as Wjj,(t)=W§.5.),) +Wjjr([). If we introduce the
Green’s function g;;,() for the unperturbed Pauli equation,

which meets the condition
d
80+ X Wg ()=~ 803, (15)
jN

then the desired function p;(¢) will be a solution of the fol-
lowing integral equation:

pi(0)=p" + >

o1 J —oo

JJ

dt’gj,r(t—t YWyt )pp(t'), (16)

where p(o) is an equilibrium occupation probability for the
state j obeying the detailed balance principle, w, © (0)
_W(O?p(o) This equality is transformed to W«)) 0) W<0§p o
(if the second relation in formulas (14) is taken 1nt0 aecount)
thus permitting the diagonalization of the matrix W;;),) as fol-
lows:

ZW‘“

=2,Cjq- (17)

The eigenvalues z,, of the matrix Wj],) are non-negative and

the eigenvector matrix Cj, is unitary accurate to the weight
factors p(o) as follows:

2 (0"
J

Since ; W(.O)=O we have 2, W(O)C i1q=242>;Cjs=0. The lin-
ear 1ndependence of rows C suggests that at least one eigen-
value z, is equal to zero. Assume that g=0 corresponds to

=0 and that 2,C;,=0 at ¢ # 0. Using the second equatlon
of Eq. (18) and the normalization condition EJp '=1, we

arrive at the following useful relations:

> Ciy=8,0. (19)
J

-1 (0)
CiyCipr = Sugr» Echcj,q P35 (18)

0
CjO = p; )’

They enable us to express the matrix W in terms of its
eigenvalues and eigenvectors: Wjj),) =(pj(. )"'2,2,C;,C " and
this result can be used to derive the time dependence of the

desired Green’s function as follows:
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g, (1) == 60 (p)) 'E CiyCrryexp(=zg),  (20)

where 6() is the theta function equal to 1 at >0 and to 0 at
t<0. The frequency Fourier transform of the Green’s func-
tion is defined by the relation g;;/(w)=/7,drg;(t)exp(iwt)
and becomes

C:
Jq

g(w)=—i(p\))1 3 ——1 (1)
(1)+qu

IV. ONE-DIMENSIONAL PERIODIC SYSTEM OF
DEGENERATE STATES

A one-dimensional periodic system of degenerate states
can be exemplified by the symmetric set of azimuthal equi-
librium orientations,

( 2mj . 2mj
&=

cos—,sin—— O) j=0,1,....n-1, (22)
n n

which is realized in an n-well hindered rotation potential

Un((p) = — COos n(P)’ (23)

1

EA U,(1
with AU, denoting the rotational potential barrler [1]. In this
case, equlllbrlum probabilities appear as p =1/n, and non-
zero unperturbed transition rate constants are all equal to

Wik =Wl = wo, wo= v, exp(= BAU,),  B= (ksT)™.
(24)

Thus, according to the second relation (14), we obtain
W(O 2W0’ ngﬂ W;?—l J- (25)

Here the periodicity of the system makes the states j=n and
Jj=0 equivalent.
Equation (17) assumes the form

- Wo(Cj+1,q + Cj—l,q) = chjq. (26)

With regard to relations (19), its solutions can be written as

2W()qu

n

L, Tq 1 2mi
zq=4wosm2—, qu=Z€Xp<TQJ>. (27)

Substituting these solutions into formulas (20) and (21), one
can explicitly represent the time and frequency Fourier trans-
form of the Green’s functions for the degenerate periodic
system as follows:

mq 27q
g (t ()—— Eexp{ 4wt sin>— +i—(j—j )]
4=0 n n

(28)

1S expl2migli=j)in]

n

gy (w) =~ (29)

a0 — i+ 4w sin® mg/n’

The time-dependent addends ¥ (¢) to the transition rate
constants, which account for the actlon of the external alter-
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nating electric field [see the second term in Eq. (4)] and the
relevant matrices Wjjr(t) are expressed on the basis that the
probabilities p;(¢) are dictated only by modulation of poten-
tial well minima within the linear-in-field approximation. As
the energy of the jth potential well minimum changes by
—p;-E(t)=—uE(t)cos(2mj/ n—¢g), where ¢ is the angle be-
tween the field vector E(r) and the orientation of the well
with j=0, we obtain

Wjj(t) =W, 1 () + W, ;1 (1) = = 2w BrE(t)cos(2mjin — ¢p),

Wj,jﬂ(t) == Wi (1) == 2woBuE(t)cos[27(j + 1)/n — ¢g],

Wj+1,j(f) =—W; j41(t) = woBurE(t)cos2mj/n — ¢g). (30)

Substituting relations (28) and (30) into Eq. (16) and solving
it within the first-order perturbation theory with respect to
the alternating external field E(f)=E cos wf (with the fre-
quency w), i.e., with the assumption that pj.(;):p;()): 1/n on
its right-hand side, we arrive at the following expression for
the stationary regime:

1 4woBuE sin(m/n)
pi(t)=—+ °

n

% (277. )
cos| —j-¢ ,
n k \/16w3 sin*(7/n) + @*

cos(wt — &,)

tan & @ 31)
an §,= ——————.

" 4w, sin*(m/n)
Calculating the average dipole moment (13) by Egs. (22) and
(31), and summing it over j give the time dependences of
(m) at n=2 and n>2 as follows:

,cos(wt — 52){E cos QDE}
, n

e v vt B

(1)) = 2woBu* sin*(/n)

cos(wt — 6, E cos
(0= ) { . ¢E}’ o,
E sin ¢p

\/16w% sin*(7/n) + w*

(32)

These relations enable us to conveniently calculate the fre-
quency dependence of the polarizability tensor, which is de-
fined as the proportionality factor between the Fourier com-
ponents of the average dipole moment and the vector of the
external electric field: (u,(®))=Xqp5(w)Eg(w). The indices
a,B=x,y designate the projections onto the Cartesian coor-
dinate axes, with the x axis oriented along the well with j
=0, and summation is implied over repeated Greek indices.
As a result, the expressions for x,s(w) at n=2 and n>2 are
obtained as follows:

4wy
Xaﬁ(w)z,gﬂ —50[ Opes N=2,

—iw+4w,
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2w sin’(7/n)

Xaﬁ(w) = B/‘Lz 5{1[3’ n>?2 (33)

—iw+ 4w, sin’(7/n)

(8ap=1 at @=p and J,5=0 at @+ B). It should be noted that
the tensor x,g(w) is essentially anisotropic at n=2 and iso-
tropic at n>2. The phase shift §, between the time depen-
dences of the external field and the average dipole moment
[see relations (31) and (32)] leads to a nonzero imaginary
part of the polarizability tensor and the dielectric loss tan-
gent.

We now use Egs. (11), (12), and (31) to calculate
the average flux [as defined in Eq. (9)] over the external field
period 7=27/w. According to representation (5), the
barrier factors v;(f) can be expressed as v;(f)=w[l
+BurE()cos(2mj/n— g+ m/n)] in the first-order perturba-
tion theory with respect to the external field intensity. Thus,
we arrive at

1 »’
- —wo,Bz,quz—zsin 20, n=2
4 o + 4wy (34)

0, n>?2.

D=

In view of the symmetry of the hindered rotation potential
with n>2, the average flux vanishes, when treated by the
second-order perturbation theory with respect to the external
field intensity. At n=2, the system has a selected direction
along two wells of the hindered rotation potential. If the field
is oriented at the angles ¢p#0, = 7/2,7 to this selected
axis, the alternating field modulates not only the minimum
positions for potential wells but also the maximum positions
for potential barriers. All these prerequisites give rise to the
ratchet effects and hence to unidirectional rotation at n=2, as
illustrated in Fig. 2. The figure shows the initial symmetric
potentials of hindered rotation defined by Eq. (23) at n=2
(dashed lines) and the resulting potentials modified by the
external field with the maximum amplitude at two instants
separated by the vibration half-period (solid lines). Unidirec-
tional rotation originates from the following two processes.
First, the asymmetry of hindered rotation potentials modified
by the field makes a particle jump from the shallow well into
the deep one, as a result of surmounting the small potential
barrier through thermal activation. As the jump is thermoac-
tivated, the unidirectional rotation ceases in the low-
temperature limit. Second, a change in the field polarity oc-
curring with time causes vertical transitions of the particle
from the deep to the shallow well. The thermally activated
transport in the same direction occurs again in the new po-
tential relief and the cycle is repeated over and over.

It is easily seen that the potentials presented in Fig. 2 are
mutually shifted by half a period. The Brownian motors with
potentials fluctuating in such a manner are noted for their
high energy conversion efficiency provided that reverse
fluxes are locked by high barriers [14—17]. In our case, when
the external field is weak enough, the potential relief is
modulated only slightly and unidirectional motion is not en-
ergetically efficient. Nonetheless, generation of unidirec-
tional angular motion of a dipole rotator in a two-well hin-
dered rotation potential under the action of a linearly
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FIG. 2. The mechanism for the occurrence of unidirectional ro-
tation in a periodic symmetric two-well potential (dashed lines),
with the wells and barriers modulated with an alternating external
field (solid lines at the top and bottom). The asymmetry of the
hindered rotation potentials modified by the field leads a Brownian
particle to surmount the small potential barrier through thermal ac-
tivation and to jump from the shallow well into the deep one. The
preferred direction of the particle motion remains unchanged on a
change of the field polarity which causes vertical transitions of the
particle from the deep to the shallow well.

polarized alternating electric field is another vivid example
of a Brownian motor with potentials fluctuating by half a
period.

It is noteworthy that though potential energy fluctuations
in the system concerned are induced here by the external
force, such a Brownian motor still can be regarded as a flash-
ing ratchet. This is due to the rotational nature of the motion,
which makes the external-force potential energy a periodic
angular function just as a hindered rotation potential. For
rocking ratchets (characterized by a nonperiodic fluctuating
external force), locking of the reverse flux also largely in-
creases the Brownian motor efficiency and transport param-
eters [18,19].

In the next section, the temperature dependences of the
imaginary part of the polarizability and the average flux will
be described in detail for the most interesting case, namely,
an asymmetric two-well potential. It should be borne in mind
that a system with a selected direction can have such an
asymmetry of the angle-dependent potential that clockwise
and counterclockwise rotations are still equivalent. If so, the
ratchet effects arise not from the potential asymmetry but
due to a fluctuating external force periodic in the angular
variable.

V. ASYMMETRIC TWO-WELL POTENTIAL

Due to the periodicity of the azimuthal potential with n
=2, a particle can jump both clockwise and counterclockwise
between the states j=0 and j=1. For the clockwise transi-
tion, representation (5) of rate constants assumes the follow-
ing form:
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wo 1 (1) =vi(Ouelt), Wy o(t) = vo(u, (1), 35)

and the corresponding quantities for counterclockwise mo-
tion appear as

w1 (1) =vo(Due(t), Wy o(t) = v (u (1). (36)

The wells in the well function u(t) and the barriers in the
barrier function v() are labeled by the index j=0,1 (just as
for n=3 in Fig. 1) Such a system is equivalent to that with
two states and two reaction activation barriers, i.e., to the
simplest case of a catalytic wheel operating as a Brownian
motor under nonequilibrium conditions [20]. If normalized
by condition (1) with n=2, Egs. (2) and (3) for the functions
p,(t) are reduced to a single first-order differential equation,
with its solution expressed explicitly for j=0 [5].

po(1) = s(1)[py(0) + f dt'Tve(t") + v, (¢")Juy (t)s71 (1)1,
0

s(1) =eXp[—f dt'[vo(t") + vy (") ug(r") + uy (£')]].
0
(37

To further calculate the polarizability and the average flux in
a weak alternating electric field, one can expand solution
(37) in terms of the field intensity or employ the perturbation
theory of the Pauli e(?uatlon developed in Sec. III. Introduc-
ing four quantities, v;"’ and ul? ; ) at j=0,1, as the parameters
of the unperturbed two—well potential, we obtain the eigen-
values and eigenvectors of Eq. (17) as follows:

20=0, 2=+ +u?), (38)

c —;<”(10)
Jq9 ugO) + M(10) u(()o)

which involve the values of the equilibrium probabilities p
and p(o) (0) =1- p(O) (O)/ (u(0)+u(0)) As a result, we arrive
at the followmg expressions for the average flux, the nonzero
components of the time-dependent average dipole moment,
and the frequency-dependent polarizability:

o
VulPu© )

N (0 (0)

0). (0 0) (0 o
o
T 0, ,0,0, <o>/3' WETsin2¢p 55,
Uy +U; U Wtz
O
<Mx(t)> = u(()) (())M"‘ (U(() ) +0; ))
0
y 4u§)0)u(10 BLE cos(wt — &)
o @ BRE cos op—=—=",
up + Vo’ +2;

w
tan 6, = —,
<1
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440y 1

2/..(0) 0 "1
ol vy +U - . 39
X() ﬁM(o 1)(0) ©) _ Ciw+z ( )

+ U

To analyze the relations derived, we set that two barriers in
the two-well potential have the same maxima, i.e., vg])
=v\”=w,, where wy is given by expression (24), and the
asymmetry of the potential relief originates only from differ-
ent well depths. If the difference of the potential well depths
is designated by 2&, we have z;=4w, cosh(B¢) and the factor
4u80)u(10)/(u50)+u(,0)) provides 2 cosh™'(B&). Let us measure
the external field frequency in units of 4, (i.e., @=w/4v,)
and energies in temperature units (T, =AU, /kp,T;= &/ kg).
It is also expedient to introduce the dimensionless functions
of temperature as follows:

T,/T @ exp(=T,/T)
(1) = > 3 ;
cosh(T/T) @ + exp(— 2T/ T)cosh*(T/T)
O(7) = T,/T exp(=T,/T) ’
cosh(T¢/T) \@* + exp(- 2T/ T)cosh* (T4 T)
_(Ty1)? @ exp(—T/T)
R(T) = cosh(T¢/T) & + exp(— 2T/ T)cosh*(T4T)’ (40)

so as to express the sought-for quantities in the following
form:

2

Im & =4mCy Im y = 4WCVﬁF(T),
¢

(’DECI)(T)cos[wt -5(M)]|,

(2

(1)) = | tanh(B8) + &

mu*E? sin 2¢p
2AU

¢

Q=2m(J),=- R(T). (41)

It is assumed here that the imaginary part Im & of the dielec-
tric permittivity of a highly dispersed powder, with its par-
ticles containing rotators on the surface, is proportional to
the imaginary part Im y of the polarizability of an individual
rotator and to the bulk concentration Cy of rotators. The
experimentally measured dielectric loss tangent is equal to
the ratio Im e(w)/Re e(w) and is actually dictated by the
value of Im &, because Cyy<<1 and Re &(w)~ 1. Since real-
istic values of external electric field intensities are estimated
as uE/AU,<1, the oscillation amplitude for the average
dipole moment appears small relative to the dipole moment
m of an individual rotator. For the same reason, a rotator in
the potential well has the average angular velocity (), which
is also small as compared to its characteristic angular vibra-
tion frequency v, and falls in the radio frequency range.
Characteristic parameter values for a hydroxyl group on the
oxide surface (a typical surface rotator) are as follows:
AU,~50 meV (T,~600 K), v,=100-200 cm‘1 u~1D,
CV~ 1020 cm™3 [1] Then ,u,z/AU ~1072 ¢cm® and Im e
~ 1072 at such temperatures that F' (T) ~1, i.e., surface rota-
tors significantly contribute to the dielectric loss tangent.
To rationalize temperature dependences (40), we put T,
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FIG. 3. The temperature dependences of the imaginary part of polarizability [(a),(d)], the oscillation amplitude for the average dipole
moment [(b),(e)], and the average angular velocity [(c),(f)] expressed by relations (41) in terms of dimensionless reduced functions (40) with
T,=AU,/kz=600 K. The temperature is measured in K. Curves 1, 2, and 3 correspond to the reduced frequencies of the alternating electric
field, @=w/4v,=0.0003,0.0025,0.01. Solid and dashed lines in panels (a), (b), and (c) respectively represent the symmetric potential (T
=0) and that with the time-independent asymmetry (7,=100 K). The effect of the orientational phase transition on the above-mentioned
system characteristics in the low-temperature region is shown in panels (d), (e), and (f) at T(T)=T,(1-T/ T.)"8, T<T,. and T{T)=0, T

>T, with Ty=T,=100 K.

=600 K and consider two cases, a symmetric potential with
T;=0 and an asymmetric one with T¢=100 K as the charac-
teristic temperature of asymmetry initiation. Well-defined
stochastic resonance observed in the former case manifests
itself by maxima arising at such temperatures that the aver-
age frequency z; of interwell transitions is much the same as
the frequency w of the alternating external electric field [see
the solid lines in Figs. 3(a)-3(c)]. At low temperatures, the
response to the external field is weak due to the small prob-
ability for a particle to surmount potential barriers through

thermal activation. In the high-temperature region, this re-
sponse decays with increasing temperature; so, the quantities
concerned exhibit nonmonotonic temperature dependences
with the maximum at z; ~ w.

Stochastic resonance appears most conspicuously for the
dielectric loss tangent and the average rotation velocity. The
oscillation amplitude for the average dipole moment is char-
acterized by broader bands and slowly decays at high tem-
peratures. The temperature dependence of the phase shift be-
tween the external (input) and the response (output) signals
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behaves monotonically decreasing from /2 to zero as the
temperature rises. Stochastic resonance occurs at about &,
=1r/4. Figure 3 presents a family of functions (14) for three
values of the frequency w (curves 1-3), the middle one cor-
responding to stochastic resonance at 7=100 K. The smaller
the frequency w, the higher the curve maxima for the dielec-
tric loss tangent and the oscillation amplitude for the average
dipole moment. At the same time, the temperature-dependent
average angular velocity shows lower maxima for small fre-
quencies since this parameter is quadratic in w.

The asymmetry of the potential leads functions (40) to
decrease in the low-temperature region [see the dashed lines
in Figs. 3(a)-3(c)]. As a result of the asymmetry-induced
suppression, the oscillation amplitude for the average dipole
moment undergoes no stochastic resonance at all. The
temperature-independent asymmetry of the potential relief
can arise from perturbation of the hindered rotation potential
by its local environment, e.g., by structural surface defects or
by adsorption of some other molecules (if their desorption
temperature is over the range of stochastic resonance). Thus,
the quantities concerned prove sensitive to environmental
effects and can, therefore, provide significant information
about them.

Another interesting case of the temperature-dependent
asymmetry of the potential refers to two-dimensional rotator
systems which undergo orientational phase transitions due to
dipole-dipole interactions between rotators. These interac-
tions give rise to the collective effects which govern the dy-
namics of such systems. At the same time, one can consider,
as a zero-order approximation, the static limit in which inter-
particle interactions cause only the average local field & act-
ing on each individual rotator and thus deepening one of the
potential wells. The field intensity £ is proportional to the
constant component of the average dipole moment, which is
itself expressible in terms of & [see the first term in formula
(41) for{u,(£))]. This self-consistent model underlies the
known average-field approximation, which qualitatively ac-
counts for the thermodynamic characteristics of the phase
transition. Quantitative description is offered by numerical
methods, while analytical treatment is possible only in very
rare cases of exactly soluble models. For instance, the two-
dimensional Ising model provides the following temperature
dependence of the order parameter and, hence, of the average
field: T{T)=To(1-T/T,)""® at T<T, and TAT)=0 at T>T,
[21] (this function with T,=T7,=100 K is used in Figs.
3(d)-3(f) to illustrate the effect of the orientational phase
transition on the low-temperature characteristics of a surface
rotator system). As the potential becomes asymmetric only at
T<100 K, solid curves shown in Fig. 3 in panels (a)—(c)
and (d)—(f) respectively coincide in the temperature range
T>100 K. Solid curves in panels (d)—(f) differ from the
dashed lines in panels (a)—(c) in that the quantity T is itself
temperature dependent. Curves 1, 2, and 3 plotted for varied
o contain a singular point at the phase transition temperature
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T.=100 K, where the first derivative is infinite. On going
from the symmetric case to that with temperature-dependent
Tg, curves 1 change most of all, since stochastic resonance
for them falls in the region of ordered average dipole mo-
ments, 7<100 K. As an example, curve 1 in Fig. 3(d) has
two peaks, the left one corresponding to stochastic resonance
and the right one to the orientational phase transition. Hence,
phase transition characteristics can be judged by the tempera-
ture dependences of the quantities under study.

VI. CONCLUSIONS

A Brownian particle, if placed into a periodic n-well po-
tential with barrier energies larger than kT, executes ther-
mally activated random jumps between the minima of neigh-
boring potential wells. Motion of this kind is typical of
adsorbed polar molecules in the hindered rotation potential,
with the relief shaped by the local molecular environment.
An external alternating electric field applied to the system
gives rise to a dielectric response, which is detectable experi-
mentally and provides significant information about the hin-
dered rotators as well as their local environment.

Starting from the perturbation theory of the Pauli equation
with respect to the weak field intensity, we have derived
explicit analytical expressions for the time dependence of the
average dipole moment, as well as the frequency depen-
dences of polarizability and the average angular velocity, the
three quantities exhibiting conspicuous stochastic resonance.
As shown, unidirectional rotation is possible only if the ex-
ternal alternating field simultaneously modulates minima and
maxima of the potential. For a symmetric potential of hin-
dered rotation, the average angular velocity (treated by the
second-order perturbation theory with respect to the field in-
tensity) does not vanish only at n=2, i.e., when two azi-
muthal wells specify a selected axis in the system.

Special attention is paid to a two-well asymmetric poten-
tial, with the asymmetry induced by local fields which arise
from environmental inhomogeneities or from orientational
ordering in the low-temperature region. As a result of the
ordering, the dielectric loss spectrum exhibits specific fea-
tures, namely, some additional peaks in the low-temperature
region and a singular point with an infinite first derivative at
the phase transition temperature.

Unidirectional angular motion of a dipole rotator in a two-
well hindered rotation potential occurring under the action of
a linearly polarized alternating electric field is caused by the
same mechanism as translational motion in Brownian motors
with potentials fluctuating by half a period. Motors of this
kind are therefore illustrated well by the dipole rotator model
developed here.
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